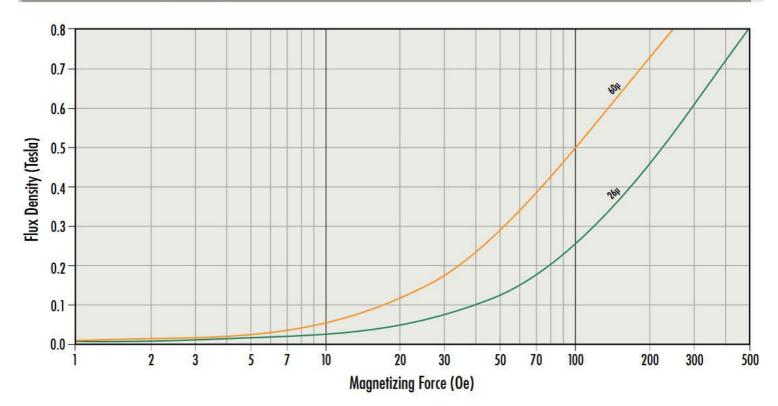


Kool Mµ® Hf

Material Property Curves

- DC Magnetization Curves
- Core Loss Density Curves
- Permeability versus Temperature Curves
- Permeability versus DC Bias Curves
- Permeability versus Frequency Curves
- Permeability versus AC Flux Curves
- Core Selection Chart

DC Magnetization Curves



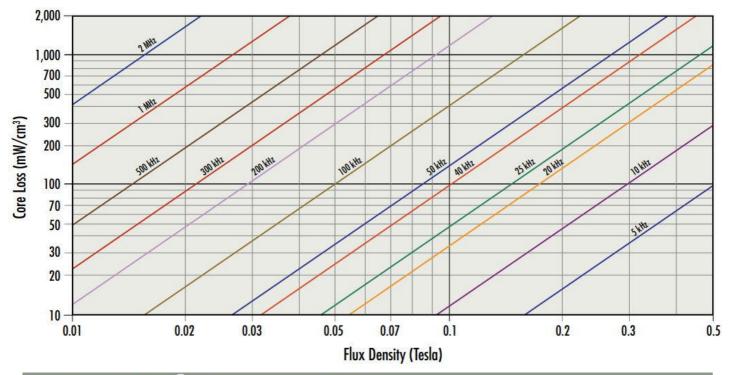
Fit Formula

$$B = \left[\frac{a + bH + cH^{2}}{1 + dH + eH^{2}}\right]^{x} \text{ where } B = \text{Tesla (T), } H = \text{Oersteds (Oe)}$$

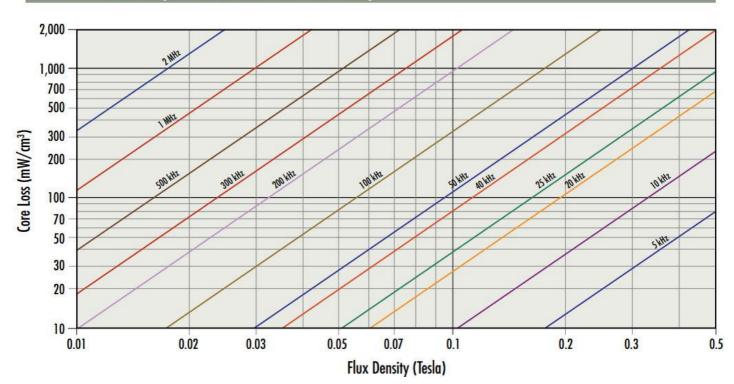
	Perm	a	Ь	C	d	е	X
Kool Mµ® H <i>f</i>	26µ	5.241E-02	1.534E-02	5.564E-04	9.843E-02	4.635E-04	1.770
Toroids	60µ	3.621E-02	1.674E-02	5.950E-04	5.718E-02	5.134E-04	1.599

Kool Mµ® Hf Toroids

Core Loss Density Curves

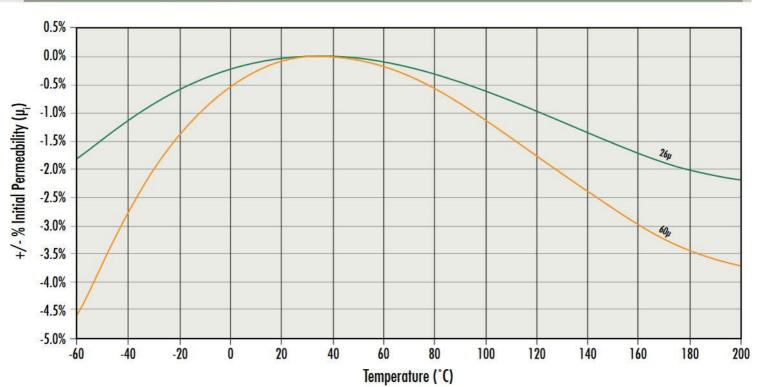


Fit Formula


 $P = aB^bf^c$ where B = Tesla (T), f = kilohertz (kHz)

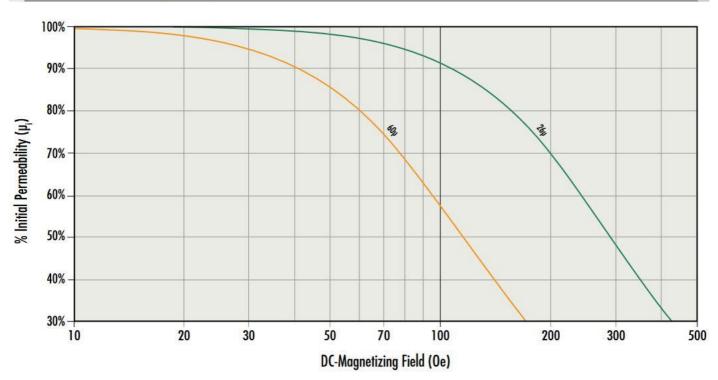
	Perm	a	Ь	C
Kool Mµ® Hƒ Toroids	26µ	32.22	1.988	1.541
	60µ	26.18	1.988	1.541

Kool Mμ[®] Hf Toroids 26μ


Kool Mμ[®] Hf Toroids 60μ

Permeability versus Temperature Curves

Kool Mµ[®] Hf


Fit Formula

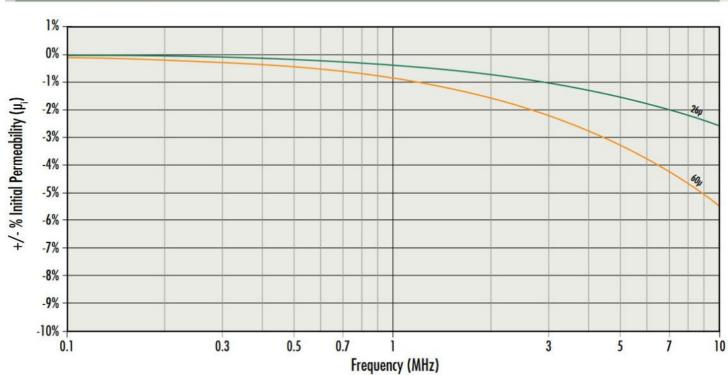
Change compared with
$$\mu_{25^{\circ}C} = \frac{\mu_{T} - \mu_{25^{\circ}C}}{\mu_{25^{\circ}C}} = a + bT + cT^{2} + dT^{3} + eT^{4}$$

	Perm	a	b	c	d	е
Kool Mµ® Hƒ	26µ	-2.268E-03	1.373E-04	-2.055E-06	1.755E-09	1.316E-11
	60µ	-5.441E-03	3.217E-04	-5.135E-06	1.320E-08	2.276E-12

Permeability versus DC Bias Curves

Kool Mµ® Hf Toroids

Fit Formula

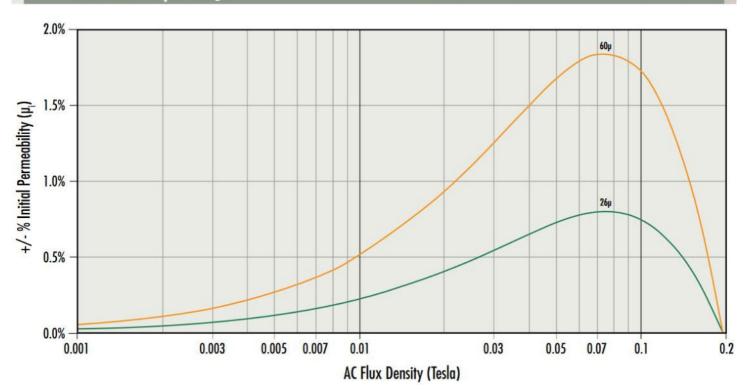

% initial permeability =
$$\frac{1}{(a + bH^{\circ})}$$
 where H is Oersteds (Oe)

	Perm	a	Ь	C
Kool Mµ [®] H <i>f</i>	26µ	0.01	3.556E-08	2.213
Toroids	60µ	0.01	4.064E-07	2.131

Permeability versus Frequency Curves

Kool Mµ[®] Hf

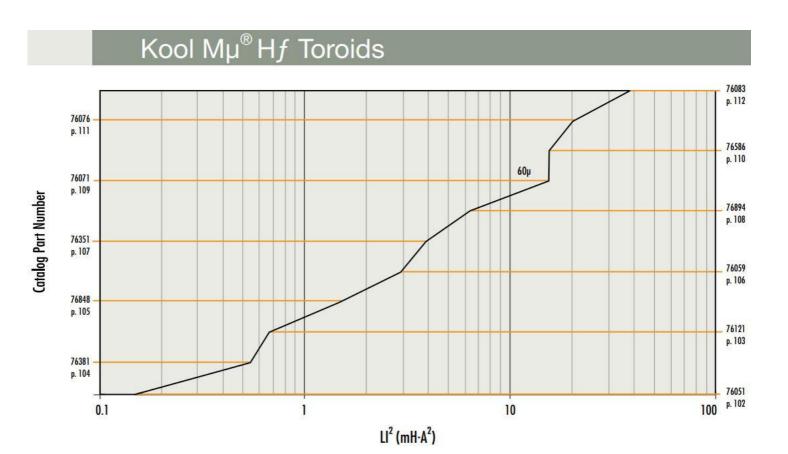
Fit Formula


 $\pm \%\mu_i = a + bf + cf^2 + df^3 + ef^4$ where f = megahertz (MHz)

	Perm	a	Ь	C	d	е
Kool Mμ [®] H <i>f</i>	26µ	0	-4.371E-03	3.095E-04	-1.344E-05	0
	60µ	0	-9.179E-03	6.500E-04	-2.822E-05	0

Permeability versus AC Flux Curves

Kool Mµ® Hf


Fit Formula

 $\pm \%\mu_i = (a + bB + cB^2 + dB^3 + eB^4)$ where B is Tesla

	Perm	a	Ь	c	d	е
Kool Mµ® H <i>f</i>	26µ	0	2.464E-01	-2.368E+00	7.404E+00	-8.877E+00
	60µ	0	5.686E-01	-5.465E+00	1.709E+01	-2.049E+01

Core selection charts

