

European leader in advanced technology solutions

Acal BFi kOr

Custom Services for Magnetic Components

Specification for Soft Magnetic Material

kOr 156 Material:

rev. 2 page 1

Nominal data:

	Symbol	Unit		Conditions	
Chemical composition		at%		~Fe ₈₀ Si ₇ B ₁₃	
Saturation flux density	B _{sat}	mT	1560	H > 300 A/m	25°C
(saturation induction)			1470	H > 300 A/m	100°C
Curie temperature	T _c	°C	400		
Resistance	ρ	μΩm	1,3		
Density	d	g / cm ³	7,18		
Saturation magnetostriction	λ _S	ppm	27	annealed	
1)					
Initial permeability ¹⁾	μ _i		3000 - 15 000	in protection case	25°C
Initial permeability ¹⁾	μ		3000 - 15 000 1500 - 5000	in protection case impregnated	25°C 25°C
Initial permeability ¹⁾ Power losses (uncoated, uncut)	μ _i Ρ _{Fe}	W/kg	3000 - 15 000 1500 - 5000 10	in protection case impregnated 1 kHz / 1,0	25°C 25°C T
Initial permeability ¹⁾ Power losses (uncoated, uncut)	P _{Fe}	W/kg	3000 - 15 000 1500 - 5000 10 80	in protection case impregnated 1 kHz / 1,0 10 kHz / 0,6	25°C 25°C T T
Initial permeability ¹⁾ Power losses (uncoated, uncut)	μ _i Ρ _{Fe}	W/kg	3000 - 15 000 1500 - 5000 10 80 1,2	in protection case impregnated 1 kHz / 1,0 10 kHz / 0,6 16 kHz / 0,03	25°C 25°C T 5 T 57 T
Initial permeability ¹⁾ Power losses (uncoated, uncut) Tape thickness ²⁾	μ _i P _{Fe} d	W/kg µm	3000 - 15 000 1500 - 5000 10 80 1,2 25	in protection case impregnated 1 kHz / 1,0 10 kHz / 0,6 16 kHz / 0,03	25°C 25°C T 5 T 57 T
Initial permeability ¹⁾ Power losses (uncoated, uncut) Tape thickness ²⁾ Tape width	μ _i P _{Fe} d b	W/kg µm mm	3000 - 15 000 1500 - 5000 10 80 1,2 25 5 - 130	in protection case impregnated 1 kHz / 1,0 10 kHz / 0,6 16 kHz / 0,03	25°C 25°C T 7 7 7 7 7 7
Initial permeability ¹⁾ Power losses (uncoated, uncut) Tape thickness ²⁾ Tape width Filling factor (stacking factor)	μ _i P _{Fe} d b FF	W/kg µm mm %	3000 - 15 000 1500 - 5000 10 80 1,2 25 5 - 130 >85	in protection case impregnated 1 kHz / 1,0 10 kHz / 0,03 16 kHz / 0,03 b ≤ 25 mm	25°C 25°C 7 5 T 5 T 7 T

recommended max. storage and operational temperature °C 150	nmended max. storage and ational temperature
---	--

Remarks:

1) Initial Permeability depends on annealing and finishing. Given values refer to toroidal cores without gaps or cuts annealed in transverse field.

A_L-values are calculated according to $A_L = \mu_r \mu_0 \frac{A_{Fe}}{l_{Fe}}$

(A_L in mH, A_{Fe} in mm^2, I_{Fe} in mm, μ_0 = 4\pi \cdot 10^{-7} Vs/Am)

 A_{Fe} and I_{Fe} depend on the core dimensions and are indicated in the core datasheets.

2) Effective tape thickness, calculated from length, width and density of a tape sample. Geometrical tape thickness (measured with a tape stack using a gauge) is higher by 10% - 15% due to roughness.

European leader in advanced technology solutions

Custom Services for Magnetic Components

Acal BFi kOr

rev. 2 page 2

Effective Permeability vs. Bias Field

Notes:

Typical curves are shown. N = 1, U_{eff} = 100 mV

Cores are impregnated with Epoxy

Nominal / minimum permeability for single cut cores without additional gap: 10 kHz: 100 kHz:

1500 / 900 Influence of gi 1100 / 700 magnetic path length and gap width. Displayed example refers to magnetic path length of 280 mm.

Notes:

Cores are impregnated with Epoxy

N = 1, U_{eff} = 100 mV $I_{DC} = H_{DC} \cdot I_{Fe}$ upper curves: 10 kHz; lower curces: 100 kHz

Influence of gap depends on the ratio of magnetic path length and gap width. Displayed example refers to magnetic path length of 280 mm.

Notes:

Typical losses are given for uncut cores without impregnation or coating, excited with sinusoidal voltage of an amplitude corresponding to the indicated peak induction.

Losses increase under mechanical stress, e.g. coating, impregnation, and wire winding without sufficient protection.

Additional losses occur when cutting and introducing gaps.